Search results for "Standard linear solid model"
showing 7 items of 7 documents
Degenerate Landau–Zener model in the presence of quantum noise
2019
The degenerate Landau–Zener–Majorana–Stückelberg model consists of two degenerate energy levels whose energies vary with time and in the presence of an interaction which couples the states of the two levels. In the adiabatic limit, it allows for the populations transfer from states of one level to the states of the other level. The presence of an interaction with the environment influences the efficiency of the process. Nevertheless, identification of possible decoherence-free subspaces permits to engineer coupling schemes for which the effects of quantum noise can be made negligible.
Three-state Landau-Zener model in the presence of dissipation
2019
A population transfer based on adiabatic evolutions in a three-state system undergoing an avoided crossing is considered. The efficiency of the process is analyzed in connection with the relevant parameters, bringing to light an important role of the phases of the coupling constants. The role of dissipation is also taken into account, focusing on external decays that can be described by effective non-Hermitian Hamiltonians. Though the population transfer turns out to be quite sensitive to the decay processes, for very large decay rates the occurrence of a Zeno-phenomenon allows for restoring a very high efficiency.
Dynamic Analysis for Axially Moving Viscoelastic Poynting–Thomson Beams
2015
This paper is concerned with dynamic characteristics of axially moving beams with the standard linear solid type material viscoelasticity. We consider the Poynting–Thomson version of the standard linear solid model and present the dynamic equations for the axially moving viscoelastic beam assuming that out-of-plane displacements are small. Characteristic behaviour of the beam is investigated by a classical dynamic analysis, i.e., we find the eigenvalues with respect to the beam velocity. With the help of this analysis, we determine the type of instability and detect how the behaviour of the beam changes from stable to unstable.
Characterization of the dynamic behaviour of flax fibre reinforced composites using vibration measurements
2017
International audience; Experimental and numerical methods to identify the linear viscoelastic properties of flax fibre reinforced epoxy (FFRE) composite are presented in this study. The method relies on the evolution of storage modulus and loss factor as observed through the frequency response. Free-free symmetrically guided beams were excited on the dynamic range of 10 Hz to 4 kHz with a swept sine excitation focused around their first modes. A fractional derivative Zener model has been identified to predict the complex moduli. A modified ply constitutive law has been then implemented in a classical laminates theory calculation (CLT) routine.
Detuning-induced robustness of a three-state Landau-Zener model against dissipation
2019
A three-state system subjected to a time-dependent Hamiltonian whose bare energies undergo one or more crossings, depending on the relevant parameters, is considered, also taking into account the role of dissipation in the adiabatic following of the Hamiltonian eigenstates. Depending on the fact that the bare energies are equidistant or not, the relevant population transfer turns out to be very sensitive to the environmental interaction or relatively robust. The physical mechanisms on the basis of this behavior are discussed in detail.
Prediction of Dissipative Properties of Flax Fibers Reinforced Laminates by Vibration Analysis
2016
This study proposes an experimental-numeric method to identify the viscoelastic properties of flax fibres reinforced composite laminate (flax/epoxide). The used method consists in identifying the evolutions of both loss factor and stiffness when vibrational frequency changes. In this way, several free-free symmetrically guided beams are excited on a dynamic range of 10 to 4000 Hz with sweep sine excitation focused around the 4-first’s modes. Fractional derivative Zener model is used to identify the on-axis ply complex moduli and describe the laminate dissipative linear behavior with the classical laminate theory. Results obtained on a quasi-isotropic laminate show that this model adequately…
Determination of dynamic properties of flax fibres reinforced laminate using vibration measurements
2017
International audience; Experimental and numerical methods to identify the linear viscoelastic properties of flax fibre reinforced polymer (FFRP) composite are presented in this study. The method relies on the evolution of storage modulus and loss factor as observed through the frequency response. Free-free symmetrically guided beams were excited in the dynamic range of 10 Hz to 4 kHz with a swept sine excitation focused around their first modes. A fractional derivative Zener model has been identified to predict the complex moduli. A modified ply constitutive law has been then implemented in a classical laminates theory calculation (CLT) routine. Overall, the Zener model fitted the experime…